K-Laser

blk-phone412-655-9300

5400 Keeport Drive, Pittsburgh, PA 15236

K-Laser

KLaser-Logo

 

 

Healing your pain… changing your life.

 

About K-Laser

 

What is Laser Therapy?

Laser Therapy, or “photobiomodulation”, is the use of specific wavelengths of light (red and near-infrared) to create therapeutic effects. These effects include improved healing time, pain reduction, increased circulation and decreased swelling. Laser Therapy has been widely utilized in Europe by physical therapists, nurses and doctors as far back as the 1970’s. Now, after FDA clearance in 2002, Laser Therapy is being used extensively in the United States.

Patient Benefits of Laser Therapy

Benefits of K-Laser Video

Laser Therapy is proven to biostimulate tissue repair and growth. The Laser accelerates wound healing and decreases inflammation, pain, and scar tissue formation. In the management of chronic pain Class IV Laser Therapy can provide dramatic results, is non-addictive and virtually free of side effects.

Has effectiveness been demonstrated scientifically?

Yes. There are thousands of published studies demonstrating the clinical effectiveness of Laser Therapy. Among these, there are more than one hundred rigorously controlled, scientific studies that document the effectiveness of laser for many clinical conditions.

Cellular Effects of Laser Therapy

During Laser Therapy the infrared laser light interacts with tissues at the cellular level and metabolic activity increases within the cell, improving the transport of nutrients across the cell membrane. This initiates the production of cellular energy (ATP) that leads to a cascade of beneficial effects, increasing cellular function and health.

Laser Therapeutic Effects

During each painless treatment laser energy increases circulation, drawing water, oxygen, and nutrients to the damaged area. This creates an optimal healing environment that reduces inflammation, swelling, muscle spasms, stiffness, and pain. As the injured area returns to normal, function is restored and pain is relieved.

K-Laser Advanced Technology

Elbow-Treatment72dpiK-Laser is leading the way in pain management, tissue repair, safe treatments, and fast treatment times. We are the premier laser company in the USA to offer:

  • Dual-Wavelength Beam that Penetrates Deep into the Tissue
  • Continuous & Modulating Frequencies to Promote Pain Control and Healing.
  • SuperPulse Mode for Deeper Therapeutic Penetration
  • High Power Delivering Larger Doses, Resulting in Shorter Treatment Times.
  • Presets that Result in More Consistent and Safe Treatment Outcomes.

 

Dual Wavelength/Triple Delivery Mode

The K-Laser was the first to employ dual infrared wavelengths simultaneously of 800nm and 970nm. Combine this with Three Distinct Delivery Modes (Continuous Wave, Frequency Modulated, and Intense SuperPulse), and you have a therapeutic laser solution that offers as much variety as the conditions and patients you treat.

Numerous studies show that Laser Therapy can help with:

Tendinopathies ∙ Carpal Tunnel Syndrome ∙ Myofascial Trigger Points ∙ Lateral Epicondylitis (Tennis Elbow) ∙ Ligament Sprains ∙ Muscle Strains ∙ Repetitive Stress Injuries ∙ Chondromalacia Patellae ∙ Plantar Fasciitis ∙ Rheumatoid Arthritis ∙ Osteoarthritis ∙ Shoulder, Back & Knee Pain ∙ Herpes Zoster (Shingles) ∙ Post-Traumatic Injury ∙ Trigeminal Neuralgia∙ Fibromyalgia ∙ Diabetic Neuropathy ∙ Venous Ulcers ∙ Diabetic Foot Ulcers ∙ Burns ∙ Deep Edema / Congestion ∙ Sports Injuries ∙ Auto & Work Related Injuries

Frequently Asked Questions

Does it hurt? What does a treatment feel like? There is little or no sensation during treatment. Occasionally one feels mild, soothing warmth or tingling. Areas of pain or inflammation may be sensitive briefly before pain reduction.  

Are there any side effects or associated risks? During more than twenty years of use by healthcare providers all over the world, very few side effects have ever been reported. Occasionally some old injuries or pain syndromes may feel aggravated for a few days, as the healing response is more active after treatment.

How long does each treatment take? The typical treatment is 3 to 9 minutes, depending on the size of the area being treated.

How often should a patient be treated? Acute conditions may be treated daily, particularly if they are accompanied by significant pain. More chronic problems respond better when treatments are received 2 to 3 times a week, tapering to once a week or once every other week, with improvement.

How many treatments does it take? This depends on the nature of the condition being treated. For some acute conditions 1 to 6 treatments may be sufficient. Those of a more chronic nature may require 10 to 15 (or more) treatments. Conditions such as severe arthritis may require ongoing periodic care to control pain.

How long before the results are felt? You may feel improvement in your condition (usually pain reduction) after the very first treatment. Sometimes you will not feel improvement for a number of treatments. This does not mean that nothing is happening. Each treatment is cumulative and results are often felt after 3 or 4 sessions.

Can it be used in conjunction with other forms of treatment? Yes! Laser Therapy is often used with other forms of therapy, including physical therapy, chiropractic adjustments, massage, soft tissue mobilization, electrotherapy and even following surgery. Other healing modalities are complementary and can be used with laser to increase the effectiveness of the treatment.

Laser therapy was born from scientific research over 30 years ago in Europe and perfected by K-LaserUSA with the latest technological advancements.

Q: What is Laser or Light Therapy?

Hand-Treatment72dpiA: Laser Therapy or "photobiomodulation", is the use of specific wavelengths of light (red and near infrared) to create therapeutic effects. These effects include improved healing time, pain reduction, increased circulation and decreased swelling.
Laser therapy is the therapeutic application of coherent, monochromatic light.
Four widely accepted therapeutic benefits of laser therapy are the following:

1) Biostimulation/Tissue Regeneration
2) Reduction of Inflammation
3) Pain reduction, either chronic or acute
4) Antibacterial and Antiviral

Bio – "Life" stimulation and tissue regeneration are the first effects cited in much of the literature. How many therapies can make such a claim?

Laser therapy adds energy to living systems. While we are able to explain many of its molecular and biochemical effects, it also adds energy at atomic and subatomic levels. When we understand these deeper effects, perhaps we may know much more about ourselves.

What can laser therapy treat?
Therapeutic applications which have shown promising results based on studies include:

Acne • Allergic Purpura • Alopecia Areata • Arteriosclerosis / Atherosclerosis • Arthritis • Asthma • Back Pain • Carpal Tunnel Syndrome • Cerebral Palsy • Dental Applications • Diabetes • Fibromyalgia • Headaches/Migraine • Hearing Disorders • Herpes • Hypertension • Hyperlipidemia • Lymphedema • Maxillofacial Disorders • Meniere' s Disease • Nerve Regeneration • Neuralgia Neuropathy • Pain (Musculoskeletal, Myofascial, Nerve) • Pancreatobiliary Disease • Peyronie's Disease • Prostatitis • Reflex Sympathetic Dystrophy • Respiratory Disorders (Asthma, Bronchitis, Pleurisy, Pneumonia, Sinusitis, Tuberculosis) • Scars • Skin Disorders • Sports Injuries • Tendonitis • Tinnitus • Wound Healing

Q: What is its history?

A: The effects of red light on cellular function have been known since 1880 however the clinical benefits were only discovered by accident during laser safety tests in 1967. The first low-power lasers suitable for treating pain became available commercially in the late 1970's and ever since then, laser therapy has been widely utilized in Europe by physical therapists, nurses and doctors. Now, after FDA approval in 2001, laser therapy is quickly gaining popularity in the USA.

Q: Has effectiveness been demonstrated scientifically?

A: Yes. There are thousands of published studies demonstrating the clinical effectiveness of laser therapy. Among these, there are more than one hundred rigorously controlled, scientific studies that document the effectiveness of laser for many clinical conditions.

Q: What does laser therapy do, anyway???

A: Read on...

Physiological effects of Laser Therapy:

- Decreased pain levels
- Reduced inflammation
- Increased tissue proliferation & regeneration
- Accelerated soft tissue and bone repair
- Increased tissue tensile strength
- Enhanced nerve regeneration & function
- Increased cell metabolism
- Increased enzymatic responses
- Increased cell membrane potentials
- Increased microcirculation & vasodilation
- Increased lymphatic flow
- Increased collagen production
- Enhanced angiogenesis (creation of new blood vessels)

Numerous studies show that laser therapy can help with these conditions:

- Arthritis
- Back Pain
- Carpal Tunnel
- Fibromyalgia
- Knee Pain
- Shoulder Pain
- Sports Injuries
- Work or Auto Related Injuries

Q: What is the power of most laser therapy devices on the market?

A: Low laser therapy devices are class III lasers whose powers range from 5 milliwatts to 500 milliwatts. The K-Series is a high-powered therapy device with power adjustable from 100 milliwatts to 12,000 milliwatts allowing for a wide range of treatment protocols. This power and penetration of the K-Laser system is not attainable with cold laser devices.

Q: How many laser sessions are necessary?

A: Usually ten to fifteen sessions are sufficient to achieve a treatment goal. However, many patients note improvement in their condition in just one or two sessions. These sessions may be scheduled at two to three times per week for short duration treatment, or once or twice per week with longer treatment protocols.

Q: Why is Laser Therapy better than some other forms of treatment?

A: It does not require the use of drugs or surgery, there are less side effects or risks, and it is quick and convenient. Studies have shown that it is equal to or more effective than other forms of physical therapy.

Q: What does it feel like to get a laser therapy treatment?

A: You really don't feel too much. There may be a slight warming sensation since the laser uses an infrared wavelength. Or you might feel a little tingly sensation - some people think this is due to the increase in cellular energy output, or the increase in cell membrane permeability.

Q: What about side effects, or other risks?

A: Occasionally I have had a patient say there pain was slightly increased after a treatment. But remember - pain should be the ONLY judgment of your condition. Increased pain my be due to an increase in localized blood flow, increased vascular activity, increased cellular activity, or a number of other effects.

During more than twenty years of use of therapeutic lasers all over the world, very few side effects have ever been reported. Contrast that with the side effects of prescription drugs or surgery - laser therapy has an amazingly safe track record.

Q: How long does each treatment take?

A: Thanks to the higher power output of a Class IV Therapeutic Laser such as the K-Laser, treatment times are shortened, so you can get on with your busy life. Most treatments take only a few minutes.

Q: How many treatments will I need?

A: Obviously, all conditions are different. But as a guideline, most tendonitis cases require fewer than six treatments over two weeks, and the area has healed. Whereas chronic arthritic knee pain may require more treatments, along with an occasional 'booster' shot of laser therapy.

Don't want to come back for more laser therapy? Consider the alternative!!!

Q: When will I feel better?

A: Some patients feel improvement in their condition after the very first treatment. Sometimes you will not feel improvement for a number of treatments. This does not mean that nothing is happening. Each treatment is cumulative and results are often felt after 3 or 4 sessions.

Research on the Benefits of Laser Therapy

What health problems have shown benefits from Laser Therapy?

- Soft Tissue Injuries
- Tendinopathies
- Back and Neck Pain
- Carpal Tunnel Syndrome
- Myofascical Trigger Points
- Epicondylitis (Tennis Elbow)
- Sprains, Strains
- Repetitive Strain Injuries
- Chondromalacia Patellae
- Planter Fascitis
- Degenerative Joint Conditions
- Rheumatoid Arthritis
- Osteoarthritis
- Neurogenic Pain
- Herpes Zoster (Shingles)
- RSD/CRPS
- Post-traumatic Injury
- Trigeminal Neuralgia
- Fibromyalgia
- Diabetic Neuropathy
- Chronic Non-Healing Wounds
- Venous Ulcers
- Amputee Stumps
- Diabetic Foot Ulcers
- Burns

What does research demonstrate:

  • Injuries treated with laser therapy heal faster
  • Laser Therapy has a strengthening effect on tissue repair
  • Laser Therapy improves blood flow & lymphatic drainage
  • It is an effective means of relief for many pain syndromes
  • It can improve immune response

 

 

klaser-sMechanisms of Action
Fundamental Mechanisms of Laser Biomodulation
Bryan J. Stephens, PhD


The Well-Oiled Human Machine

By far the most obvious and fortunate conclusion we have been able to extract from in vivo studies (not only with respect to laser phototherapy) is that our immune system is capable of handling an extraordinary range of pathologies. The time scale and degree to which our cells can react and combat these contaminants is the subject of much study, but it is clear both that lasers do stimulate the immune system and that the restoration of healthy function continues well after the initial irradiation. The amount of healing done during the minutes of laser irradiation is minuscule compared to the time it takes to relieve the body of disease or infection. This leads to one very important piece of information: the body does most of the work itself and so the target for an effective laser treatment is NOT the pathology itself, but rather to stimulate the appropriate cell compartments that lead to the body’s natural repair mechanisms. Basically, we want to stimulate the cell’s metabolism (i.e. its ability to use oxygen to create energy).

Bacteria, on the Other Hand

There are about 1000 different types of bacteria commonly present in the human body most of which reside either on the skin, or in the digestive tract. Of these, only about 10% are maintainable in cell culture and able to be studied. Some are beneficial (e.g. those that aid in digestion of food) others pathological. With this wide variety of species, never-mind their different functions and chemical signatures, it is prohibitively difficult to target any individual candidate or even to make the generalization that these candidates are more abundant than any other with respect to a particular pathology. Instead we can capitalize on one common feature in most bacteria: they do not like oxygen. Most bacteria are anaerobes that proliferate and metabolize much better in the absence of oxygen. Fortunately, this is in direct contradiction with the way our cells flourish and so stimulating the oxygen intake and conversion process will simultaneously help our healthy cells and inhibit bacteria.

Mechanisms

Identifying Targets

The most fundamental thing to keep in mind is that the cell (and the body as a whole) is comprised of more than 80% water. The variation in water content between different kinds of cells (with the exception of bone cells) is negligible and so laser therapy as a whole is highly non-selective. Cells do, however, contain some heavier elements that can act as a contrast agent against water, and which can therefore be targeted with laser radiation; the most relevant examples are iron and copper. Not surprisingly, these elements are the ones that exist at the core of the two most important photoacceptors in the body: hemoglobin at the core of blood cells and cytochrome c oxidase in the mitochondria. By and large these complexes are the principle absorbers of mammalian tissue by light in the near infrared (NIR) range of the electromagnetic spectrum (other than melanin in the skin). As such, and before any attention to their function, the characterization of absorption of these complexes was of paramount importance, and the subject of much study. Action spectra (i.e. the dependence of wavelength on absorption) have been generated for these (and other) targets in vitro and the peaks have been isolated and correlated with the biologically state of these complexes (see sectionUnderstanding K-Laser’s Success).

Metabolic Action

The action spectra tells us where in the spectrum and at what rate laser radiation is absorbed by these chromophores, but we must address the biology of the cell to understand the subsequent chain of events that lead to a beneficial, curative result. As discussed earlier, the central goal is to stimulate the cell (and ultimately, the body) to perform its natural functions, but at an enhanced rate. These natural functions are not only extremely numerous (ranging from protein synthesis to enzyme secretion, from cell signaling to physical movement) but also highly cell-type dependent. Any attempt to directly target one of the multitude and variety of these specific enzymes is difficult, and fundamentally unnecessary. If instead, the metabolism, specifically the respiratory chain, can be stimulated, the cell will enhance the functionality of all of its natural processes.

Fortunately, both hemoglobin and cytochrome c oxidase are involved in cell metabolism and their roles in the respiration chain are linked. Hemoglobin is the molecule, at the core of red blood cells, that transports oxygen through the body to the cells. When it reaches the cell it has to be de-oxygenated or “reduced”. The oxygen is then passed through the cell membranes and into the mitochondria where it is processed by a series of enzymes, the last of which is cytochrome c oxidase. Here the oxygen is again “reduced” as it is converted into water; this reaction is the stimulus for the enzyme ATP synthase to create ATP, the source of chemical energy in cells. This is the reason we need oxygen, slightly more in depth than “to breathe”.

Optimizing Efficiency

Zooming out to the big picture, hemoglobin carries the oxygen through the blood from the lungs to the cells. It has to be reduced and the oxygen flows through the respiratory chain to the terminal enzyme, cytochrome c oxidase, which then reduces again to create energy for the cell. Think of the hemoglobin as the faucet that governs the rate at which oxygen flows into the cell and cytochrome c oxidase as the drain that determines the rate at which oxygen can exit the cell in the form of ATP (energy). To optimize efficiency of the flow of oxygen through the respiratory process, the most appropriate course of action would be to open both the faucet and drain as wide as possible (opening one without the other would not increase the overall throughput); that is, stimulate the amount of hemoglobin that reaches the cell, the rate at which it reduces its oxygen, and then the rate at which the cell can process that oxygen and output energy. The goal then is to increase local blood circulation, stimulate the reduction of hemoglobin, then stimulate both the reduction and immediate re-oxygenation of cytochrome c oxidase so the process can start again.

Understanding K-Laser’s Success

Circulation

Recall the first goal of an effective therapy was to increase the amount of oxygen available for the cell to process. This means increasing blood circulation since the hemoglobin in red blood cells are the transporters of oxygen from the lungs to the cells. On the macroscopic scale, this relies on increasing the heart rate, which in turn slightly increases body (and blood) temperature. This is why exercise is good therapy for almost any ailment; increasing blood flow increases metabolism and stimulates the immune system. Locally around a wound, however, topographical heating does very little, resulting in neither an increase in circulation nor metabolism. This type of thermal effect is not the mechanism for laser stimulation of circulation. Laser irradiation instead creates local temperature gradients; that is, temperature differences on the molecular level that create potentials along which blood cells are more likely to flow. The stronger and more numerous the gradients, the more local circulation of oxygen can be stimulated.

What is the most efficient way to cause these temperature fluctuation? Recall that the cell is more than 80% water. If you can target the absorption of water by a particular wavelength of radiation, you can cause local resonances that reinforce themselves. In the entire NIR region (i.e. from 700-1000 nm) the strongest and most distinct peak in absorption is at 965 nm; the right side of Figure 1 shows the absorption spectrum of brain tissue in the NIR. Look whose laser sits right at that peak!!

Hemoglobin Deoxygenation

Once the increased circulation gets the blood to the cell, the hemoglobin that carry the oxygen in the blood have to drop off their oxygen supply. Oxygenated and deoxygenated hemoglobin have very distinct signatures in the NIR. We are not concerned with the process of re-oxygenating the hemoglobin, because this occurs in the lungs. Instead we are interested in the absorption spectrum of oxygenated hemoglobin HbO2 whose deoxygenation can be stimulated by the absorption of a photon of radiation.Figure 1 shows the rather broad peak that covers the higher end of the NIR, where both K-Laser wavelengths reside.

Cytochrome c Oxidase Redox

As discussed earlier, the terminal enzyme in the respiratory chain of a cell, cytochrome c oxidase, is the principle absorber of radiation in the entire cell and governs the rate at which oxygen is processed into ATP. Unlike the one-way deoxygenation of hemoglobin, cytochrome receives and delivers its oxygen in cycles within the cell and so we need to stimulate both processes in order to maximize efficiency. It turns out that laser irradiation does both, depending on the oxidation state of the enzyme. When deoxygenated, laser irradiation will stimulate oxygenation, and vice versa [redox]. This effect has resounding implications and is thought to be the universal validation of laser therapy. The different oxygenation states of this enzyme have peaks throughout the visible-NIR spectrum, which is why virtually all wavelengths used have shown to be useful.

K-Laser goes one step better. Laser phototherapy with wavelengths throughout the NIR spectrum enhances cellular metabolism, but there exists a peak in the absorption spectrum that can maximize this effect. Figure 1 shows the difference spectrum in the absorption of oxygenated vs. deoxygenated cytochrome. Remember, when the enzyme is either fully oxygenated or fully deoxygenated, irradiation will push the cycle along in the right direction, so we want to stimulate the process at both endpoints. The peak in the difference spectrum reflects the wavelength at which laser irradiation will have the greatest effect to change the oxygenation state, which will subsequently turn the wheels on the cellular metabolism most efficiently. This is analogous to firing the spark plugs at the exact time in the engine cycle to get the maximum effect. Notice in amazement that the shorter wavelength of the K-Laser sits right at this peak in absorption.

All Three Mechanisms in One

The wavelengths employed by K-Laser are fine-tuned for success. We have one wavelength (970 nm) that coincides with a peak in water absorption; again the cell is 80% water and so this will have the effect of most efficiently creating temperature gradients that will increase local blood flow and therefore oxygen flow. This wavelength, along with the other at 800 nm, lies within the broad peak in oxygenated hemoglobin absorption; this means once the blood gets to the cells, K-Laser irradiation will most efficiently stimulate the passing of oxygen from the hemoglobin into the cells for use in metabolism. Finally, the 800 nm beam lies at the peak in the cytochrome c oxidase redox cycle; once the oxygen is in the cell, K-Laser irradiation will most efficiently stimulate the cyclic process of using and replenishing oxygen, thereby maximizing the ATP (energy) throughput of the cell. Remember, the name of the game is oxygen: getting into the cell, getting the cell to use it faster to make more energy, and then letting the cell’s natural processes boost the body’s immune system. This will result in curative and analgesic effects upon every administration of treatment as well as continued relief in the future.

Versatility

Analysis of in vitro results have pointed out that K-Laser’s wavelength range optimizes absorption and biostimulation. In vivo studies, however, suggest that there may be more to the story, and since our aim is to treat beyond the Petri dish, we must take into account the other parameters involved in phototherapy. Many clinical trials have been done with different values of power density and frequency modulation, with a wide variety of results. Much of these effects are highly specific to the condition treated. Any attempt to make broad generalizations that one specific power setting or pulse length is the end-all-be-all is irresponsible. This doesn’t stop most salesmen of competing lasers from assuring their clients that their product is the “magic wand”.

We continue to be honest with our customers about what we do and do not know. Accordingly, we point our users to the relevant literature for their particular field for the optimum parameters. Even still, the most important advances in the history of science have come from trial and error, and as such, the adjustability of K-Laser’s power density output and frequency modulation is hugely advantageous. This machine does not offer a simple two- or three-mode variability, but rather several orders of magnitude in both parameters. With the power output ranging from 1-12 Watts and the beam size tunable from 1-5 cm2, our power density output is fully adjustable through the range of 200-12,000 mW/cm2. This combined with our frequency modulation potential of 1 – 20,000 Hz (along with the continuous wave (CW) capability) provides the most complete coverage of the therapeutic region available with any commercial laser on the market. Our field is still young, and we do not claim to have a complete understanding of all the mechanisms. Instead, we give our clients the ability to use any parameter set they wish. We also use their feedback to give future customers a more refined view of which modalities are most successful in the clinic.

Consistency and Predictability

Power density is the only necessary intensity parameter for in vitro experimentation because there is no attenuation due to a monolayer of cells. From power density measurements, calculating the energy density (i.e. dose) is straightforward: power density in units of Watts/cm2 multiplied by treatment time in seconds yields dose in units of Joules/cm2. This is the energy deposited per area of irradiated tissue. In vivo, however, this parameter does not tell the whole story. Tissue is a highly scattering medium and there is non-trivial attenuation at depths in the human body. The power density simply refers to the intensity (number of photons) at the output of the laser. This intensity decays exponentially with depth in tissue, and the decay constant (related to the penetration depth) is determined by the wavelength of the laser and the optical properties of the tissue. Furthermore, radiation will scatter laterally (radially, since the beam is cylindrical) and so there will be dose deposited beyond the spot size of the laser.

Comparing lasers to each other must therefore include more than just power density analysis. No other laser manufacturer on the market gives a full dosimetric profile of their beams. K-Laser provides a full 3-dimensional beam profile of both wavelengths at several power density and frequency settings; Figure 2 is an example of such analysis. From these profiles and a detailed analysis of the optical properties of the different types of tissue, we calculate the necessary treatment distances and times for a substantial number of therapeutic regimens. Also, if the client has a specific need to model a different anatomy, we can customize a treatment plan to yield the best results.

Take Home Message

FACT: Laser phototherapy, if administered by someone trained in the art, is beneficial in almost all of its forms and has no adverse side effects.

The differences between commercially available laser units lie solely in the wavelength, power density, pulse modulation, and aesthetics. From these parameters, you can derive the penetration depth, dose distribution, treatment time, and the estimated biological effect. There is NOT a “magic” wavelength or setting that is the cure for a disease, and to claim otherwise (as many distributors or salesmen do) is irresponsible. There are, however, certain operating regimes that give better results than others and are more effective for particular symptoms. The select few modalities, atop which K-Laser finds itself rather lonely, that have been specifically designed to isolate and capitalize on a fundamental therapeutic mechanism, have continually proved successful in the clinic. And since the primary mechanism of action is the stimulation of the body’s natural anti-pathological immune system, the range of symptoms for which this laser is useful knows no bound. No other laser company offers more versatility in treatment modality nor dosimetric information about each potential use.

For more information on the K-Laser and it's benefits, please feel free to go to the website at: k-laserusa.com

k-laser

Newsletter Signup

Get information about healthy living, Chiropractic and specials.
captcha

virtualtour

Virtual Tour

Take the YouTube Virtual Tour. 

Take Tour

3D Education

Interactive 3D Education.

Launch

Get Directions

Need help finding us?

Read More

Contact Us

412-655-9300

 

marker5400 Keeport Drive
Pittsburgh PA, 15236